returns the reducible operator corresponding to tensor decomposition decomp represented on a space with smallest angular momentum sufficient to support all moments.


returns the reducible operator on a space with angular momentum j corresponding to tensor decomposition decomp.


returns the operator for atomic system sys corresponding to the matrix of tensor decompositions mat.


returns the operator that has the spherical tensor tens as the only nonzero component of its tensor decomposition.

Details and Options

  • A tensor decomposition is a list of spherical tensors of increasing rank.


open allclose all

Basic Examples  (2)

A tensor decomposition:

Construct the reducible operator in a J=1/2 representation:

An operator on a space that contains only the kappa=2, q=0 polarization moment in its decomposition:

Scope  (1)

Properties & Relations  (3)

Recomposition undoes Decomposition:

Decomposition undoes Recomposition:

The Recomposition of the Hermitian conjugate is the Hermitian conjugate of the Recomposition:

Possible Issues  (1)

If J is specified, it must be at least twice the highest-rank polarization moment to be recomposed: